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Students at Free University of Bozen-Bolzano (FUB)

• FUB has around 3,500 students
• Dean of the Faculty of Computer Science: “Every student is a precious flower”
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Statistical Report about the Enrolled Students at FUB

Faculty of Economics
Student places 
2012 / 2013

%

140
(135+5 nicht EU / non 

UE)
105

(100+5 nicht EU / non 
UE)
55

(50+5 nicht EU / non 
UE)
35

(30+5 nicht EU / non 
UE)
35

(33+2 nicht EU / non 
UE)

Sum 370 41.45%

Faculty of Computer Science
Student Places 

2012 / 2013
%

105
(70+35 nicht EU / non 

UE)
80

(45+35 nicht EU / non 
UE)

PhD in Computer Science 10 #VALUE!

Sum 195 -25.37%

Enrollments
2011 / 2012

Enrollments
2012 / 2013

Bachelor in Economics and Management 77 93 20.78%

Bachelor in Tourism, Sport and Event Management 51 89 74.51%

Bachelor in Economics and Social Sciences 29 34 17.24%

Master in Entrepreneurship and Innovation 14 30 114.29%

Bachelor in Computer Science and Engineering 23 30 30.43%

Master in Economics and Management of the public sector 22 27 22.73%

193 273

-44.44%

8
Anmeldefrist/scad

enza
30.11.2012

Enrollments
2011 / 2012

Enrollments
2012 / 2013

67 50

Master of Science in Computer Science 36 20
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How Reliable are the Figures in the Report?
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8
Anmeldefrist/scad

enza
30.11.2012

Enrollments
2011 / 2012

Enrollments
2012 / 2013

67 50

Master of Science in Computer Science 36 20 ?
• How reliable (stable) are the figures that we see?

• What are the main factors that determine how the data
may change in the future?

Look at the Business Processes that generates and manipulates data.
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Student Registration Processes at FUB

 

4/8/2014 4
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What are Business Processes (BPs)?

• BPs are sequence of connected activities
organized to accomplish certain goal
◦ e.g., student registration process

• Several standardized languages
◦ e.g., BPMN, BPEL

• Exist execution engines that executes them
◦ e.g., jBMN
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What BPs fail to represent?

• BPs fail to model interaction with databases
◦ Formal BPs models, e.g. Petri Nets, traditionally represent data in a limited way
◦ In BPEL operations on the database are hidden in the code

• However, data is often the main driver when executing BPs
◦ E.g., a student can register for a program

only if the student was firstly admitted to the program
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Property of Query Stability

Query Stability
Informally, that is when for a given query Q and a business process B that
manipulates data the query answer of Q does not change for all future
transformations of data according to B.

We would like to answer the following questions

• Is query Q stable (from now)?

now

• If not, is there a time point from which Q becomes stable?

now t

• What are the time intervals in which Q is stable?

now t t'
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Data-aware Business Processes (DABPs) model
• A DABP B consists of two parts:

a static Process Part P and a dynamic Data Part C

• Process Part describes how the data from the data part is read and written
• Data part contains database instance and

the set of currently active process instances

System

Database

Unstarted
Instances

Business Process

Active
Instances

Read&Write

New Information in the system is brought with new process instances
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Process Part in DABPs
• Process Part P = 〈N,L〉 is defined with process net N and data rules L

• Process net N is represented as a directed graph 〈P,T 〉
where T are transitions and P are places with a spacial place start ∈ P

Example

Table 1. (a) Graphical representation of the DABP process net for student registration scenario,
execution conditions and writing rules. (b) A Database instance for the reference scenario.

(a) (b)

ordinary

a�liated

a_ontimeadmitted

refuse accept

reject

register

a_late

o_late

o_ontime

start end

acad
check

Eaffiliated = I(S, P, T ), studyplan(P, affil, M)

Eordinary = I(S, P, T ), studyplan(P, ord, M), ¬studyplan(P, affil, M)

Eadmitted = I(S, P, T ), admitted(S, P )

Erefuse = I(S, P, T ), ¬admitted(S, P ), studyplan(P, ord, M)

Ea late = I(S, P, T ), deadline(affil, D), T > D

Ea ontime = I(S, P, T ), deadline(affil, D), T < D

Wregister = I(S, P, T ), studyplan(P, R, M) ! registered(S, M, P )

Eo late = I(S, P, T ), deadline(ord, D), T > D

Eo ontime = I(S, P, T ), deadline(ord, D), T < D

Eregister = Eaccept = Ereject = true

studyplan
program registr. master

emSE affil mscCS
emCL affil mscCS
emCL ord mscCS

db ord mscCS
econ ord mscECO

admitted
student program

bob emCL
mary emSE

deadline
registr. date

ord 1st Oct
affil 1st Dec

registered
student master program

bob mscCS emCL

performing t. In this paper we assume that Et and Qt are conjunctive queries with
negated atoms and possibly comparisons involving timestamps.

Example 1. Consider again the scenario described in the Introduction. Table 1(a) con-
tains a graphical representation of a DABP process net for a simplified student registra-
tion process, together with execution conditions and writing rules.

A student who wants to register to a program needs to fill a form providing her
name and the program she wants to apply to. When received by the administration, the
request is associated with a timestamp. We represent this information by a ground atom
I(s, p, ⌧) of the relation I . The available programs are of two kinds: those that are affili-
ated to international federated programs, and ordinary ones. For federated programs, an
international commission decides about whom to admit and these decisions are stored
in the table admitted. For ordinary programs, the university takes the decision.

According to this distinction, the first check in the process is to determine to which
kind of program the request I refers to: affiliated (Eaffiliated) or ordinary (Eordinary). In
the first case, a student who is already admitted to the federated program can proceed
towards registration. Non-admitted students can go for an ordinary registration pro-
vided the program is open also to this kind of students (Erefuse). In case the student is
admitted to the federated course, then the corresponding deadline for the application is
looked up in the database: if the request arrived after the deadline (Ea late) then the reg-
istration process ends. Otherwise, if the request arrived on time (Ea ontime) the student
is registered (Eregister) and a corresponding atom is inserted into the database instance
(Wregister). Similarly, for a late ordinary request (Eo late) the process is ended, while for
a request arrived on time (Eo ontime) the academic merits are checked (acad check). This
human intervention is modelled as a non-deterministic choice that can result in the re-
quest being accepted (Eaccept) or rejected (Ereject). If accepted, the student is registered.
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Process Part in DABPs (2)

Data rules L labels every transition t ∈ T with

• Execution condition Et , a Boolean query that conditions the traversal of t, and
• Writing rule Wt = Qt(x̄)→ R(x̄), a rule that specifies which data is written
• Here, Et and Qt are CQ with safe negation over signature Σ∪ I and R ∈Σ
• Relation I is the input relation that describes process instance
◦ e.g., student application form I (’J. Smith’,’EMCL’,’Thursday 20th October, 2016’)

(the last I -argument is reserved for the instance timestamp)
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Running example: process part
Table 1. (a) Graphical representation of the DABP process net for student registration scenario,
execution conditions and writing rules. (b) A Database instance for the reference scenario.

(a) (b)

ordinary

a�liated

a_ontimeadmitted

refuse accept

reject

register

a_late

o_late

o_ontime

start end

acad
check

Eaffiliated = I(S, P, T ), studyplan(P, affil, M)

Eordinary = I(S, P, T ), studyplan(P, ord, M), ¬studyplan(P, affil, M)

Eadmitted = I(S, P, T ), admitted(S, P )

Erefuse = I(S, P, T ), ¬admitted(S, P ), studyplan(P, ord, M)

Ea late = I(S, P, T ), deadline(affil, D), T > D

Ea ontime = I(S, P, T ), deadline(affil, D), T < D

Wregister = I(S, P, T ), studyplan(P, R, M) ! registered(S, M, P )

Eo late = I(S, P, T ), deadline(ord, D), T > D

Eo ontime = I(S, P, T ), deadline(ord, D), T < D

Eregister = Eaccept = Ereject = true

studyplan
program registr. master

emSE affil mscCS
emCL affil mscCS
emCL ord mscCS

db ord mscCS
econ ord mscECO

admitted
student program

bob emCL
mary emSE

deadline
registr. date

ord 1st Oct
affil 1st Dec

registered
student master program

bob mscCS emCL

performing t. In this paper we assume that Et and Qt are conjunctive queries with
negated atoms and possibly comparisons involving timestamps.

Example 1. Consider again the scenario described in the Introduction. Table 1(a) con-
tains a graphical representation of a DABP process net for a simplified student registra-
tion process, together with execution conditions and writing rules.

A student who wants to register to a program needs to fill a form providing her
name and the program she wants to apply to. When received by the administration, the
request is associated with a timestamp. We represent this information by a ground atom
I(s, p, ⌧) of the relation I . The available programs are of two kinds: those that are affili-
ated to international federated programs, and ordinary ones. For federated programs, an
international commission decides about whom to admit and these decisions are stored
in the table admitted. For ordinary programs, the university takes the decision.

According to this distinction, the first check in the process is to determine to which
kind of program the request I refers to: affiliated (Eaffiliated) or ordinary (Eordinary). In
the first case, a student who is already admitted to the federated program can proceed
towards registration. Non-admitted students can go for an ordinary registration pro-
vided the program is open also to this kind of students (Erefuse). In case the student is
admitted to the federated course, then the corresponding deadline for the application is
looked up in the database: if the request arrived after the deadline (Ea late) then the reg-
istration process ends. Otherwise, if the request arrived on time (Ea ontime) the student
is registered (Eregister) and a corresponding atom is inserted into the database instance
(Wregister). Similarly, for a late ordinary request (Eo late) the process is ended, while for
a request arrived on time (Eo ontime) the academic merits are checked (acad check). This
human intervention is modelled as a non-deterministic choice that can result in the re-
quest being accepted (Eaccept) or rejected (Ereject). If accepted, the student is registered.

Transition Execution Condition Et

affiliated I (s,p,τ), StudyPlan(p, ’affil’,m)
ordinary I (s,p,τ), StudyPlan(p, ’ord’,m), ¬StudyPlan(s, ’affil’,p)
admitted I (s,p,τ), Admitted(s,p)
refuse I (s,p,τ), Admitted(s,p), StudyPlan(p, ’ord’,m)
a_late I (s,p,τ), Deadline(’affil’,d), τ > d
a_ontime I (s,p,τ), Deadline(’affil’,d), τ < d
o_late I (s,p,τ), Deadline(’affil’,d), τ > d
o_late I (s,p,τ), Deadline(’ord’,d), τ > d
o_ontime I (s,p,τ), Deadline(’ord’,d), τ < d

Writing Rule Wt

register I (s,p,τ), StudyPlan(p, r ,m)→ Registered(s,m,p)
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Data Part in DABPs

Data Part C , called configuration, is defined with 〈D,O,M,τ〉 where

• Database instance D over schema Σ

• Set of process instances O (called data objects)
• Mapping function M that for every data object o ∈O

determines current place in the process MP(o) = p ∈ P and
a single I -record MS (o) = I (s̄) of the input relation I 6∈Σ

• Current timestamp τ of the configuration
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Running Example: Initial Configuration

• Database instance D

StudyPlan
program registr. master
emSE affil mscCS
emCL affil mscCS
emCL reg mscCS
econ reg mscECO

Admitted
student program
bob emCL
mary emSE

Deadline
registr. date
reg 1st Oct
affil 1st Dec

Registered
student master program
bob mscCS emCL

• Data objects O = {o1,o2,o3}

• Mapping M

Mapping

id I -record place

o3 (john, db, τ3) start
o2 (alice, econ, τ2) end
o1 (bob, emCL, τ1) end

• Current time
τ = ’Thursday 20th October, 2016’
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Execution of DABPs

There are two kinds of atomic execution in DABPs
• Traversal of a transition in the net by an object

 Et Et

An object o with I -record I (s̄) can traverse transition t if Et(D ∪ I (s̄)) = true
+ the database instance is updated so D ′ = D ∪Wt(D ∪ I (s̄))

• Introduction of a fresh object o with a fresh I -record

 
start start

I(’New John’, ’EMCL’, ’Now’)

+ the configuration timestamp τ ′ is set to be the timestamps of o
• In both cases a new configuration C ′ = 〈D ′,O ′,M ′,τ ′〉 is obtained as a result
• Executions in DABPs are finite sequences of atomic executions
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Query Stability Formally
• Query Q is stable in DABP B = 〈P,C 〉 with database D

if for any reachable configuration with the database D ′

Q(D) = Q(D ′)

...

...
...

...

...

...
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Running Example: Stability of Queries
• Qcs : Who are the registered students at the Faculty of Computer Science?

e.g., Qcs(x)← Registered(x , ’mscCS’,p)

• Qeco : Who are the registered students at the Faculty of Economics?
e.g., Qeco(x)← Registered(x , ’mscECO’,p)

Faculty of Economics
Student places 
2012 / 2013

% Stable? < 1st Oct 1st Oct-1st Dec > 1st Dec

140
(135+5 nicht EU / non 

UE)
105

(100+5 nicht EU / non 
UE)
55

(50+5 nicht EU / non 
UE)
35

(30+5 nicht EU / non 
UE)
35

(33+2 nicht EU / non 
UE)

Sum 370 41,45% NO! YES! YES!

Faculty of Computer Science
Student Places 

2012 / 2013
% < 1st Oct 1st Oct-1st Dec > 1st Dec

105
(70+35 nicht EU / non 

UE)
80

(45+35 nicht EU / non 
UE)

PhD in Computer Science 10 #VALUE! NO! NO! YES!

Sum 195 -25,37% NO! NO! YES!

YES!

YES!

YES!

YES!

YES!

YES!

YES!

NO!

YES!

YES!

YES!

YES!

YES!

YES!

NO!

8
Anmeldefrist/scad

enza
30.11.2012

67 50

NO!

NO!

NO!

NO!

NO!

NO!

Master of Science in Computer Science 36 20 -44,44%

Enrollments
2011 / 2012

Enrollments
2012 / 2013

Bachelor in Computer Science and Engineering 23 30 30,43%

Master in Economics and Management of the public sector 22 27 22,73%

193 273

Bachelor in Economics and Social Sciences 29 34 17,24%

Master in Entrepreneurship and Innovation 14 30 114,29%

Bachelor in Tourism, Sport and Event Management 51 89 74,51%

Enrollments
2011 / 2012

Enrollments
2012 / 2013

Bachelor in Economics and Management 77 93 20,78%
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Reasoning about Query Stability in DABP
• We studied several types of processes types that differ in

• Semantics: Open or Closed

◦ Open semantics: new process instance can start at any moment
◦ Closed semantics: no new process instance can be started,

thus only “unfinished” objects can impact stability

• Initial Configuration: Fresh or Arbitrary

◦ Fresh: the configuration does not contain any object
◦ Arbitrary: no assumption on the presence or absence of objects

• Process Net: Cyclic or Acylcic
• Process Rules: Normal(w/ negation) or or Positive(w/o negation)
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How complex is to check stability for Conjunctive Queries
• Undcidable in the most general case :(

even in the data and query complexity

...

1
... }...}
1

• Still, many decidable cases :) by restricting DAPBs to

◦ closed semantics (no fresh instances are allowed, so obvious :)
◦ positive rules (little less obvious)
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How complex is to check stability for Conjunctive Queries

Table 5: Computational complexity of checking stability in DABP for conjunctive queries. The measures are lower and upper
bounds.

Process Rules Process Net Semantics Configuration Data Process Query Combined

Normal Cyclic / Acyclic Open Arbitrary UNDEC. UNDEC. UNDEC. UNDEC.

Cyclic / Acyclic Open Fresh UNDEC. UNDEC. UNDEC. UNDEC.

Cyclic Closed Arbitrary CO-NP CO-NEXPTIME ⇧P
2 CO-NEXPTIME

Acyclic Closed Arbitrary CO-NP PSPACE ⇧P
2 PSPACE

Positive Cyclic / Acyclic Open Arbitrary CO-NP EXPTIME ⇧P
2 EXPTIME

Cyclic / Acyclic Open Fresh PTIME EXPTIME ⇧P
2 EXPTIME

Cyclic Closed Arbitrary CO-NP EXPTIME ⇧P
2 EXPTIME

Acyclic Closed Arbitrary CO-NP PSPACE ⇧P
2 PSPACE

Table 6: Computational complexity of checking stability in DABPs for LCQ, CQ, CQ¬, and FO queries. The measures are matching.
†- the problem is EXPTIME-complete if the query languages is LCQ, CQ or CQ¬, and undecidable if the query language is FO.

Rules Net Semantics Configuration Data Process LCQ CQ CQ¬ FO Combined

normal (a)cyclic open arbitrary UNDEC. UNDEC. O(1)? UNDEC. UNDEC. UNDEC. UNDEC.

(a)cyclic open fresh UNDEC. UNDEC. O(1)? UNDEC. UNDEC. UNDEC. UNDEC.

cyclic closed arbitrary CO-NP CO-NEXPTIME O(1)? ⇧P
2 ⇧P

3? PSPACE CO-NEXPTIME

acyclic closed arbitrary CO-NP PSPACE O(1)? ⇧P
2 ⇧P

3? PSPACE PSPACE

positive (a)cyclic open arbitrary CO-NP EXPTIME O(1)? ⇧P
2 ⇧P

3? UNDEC. EXPTIME†
(a)cyclic open fresh PTIME EXPTIME O(1)? ⇧P

2 ⇧P
3? UNDEC. EXPTIME†

cyclic closed arbitrary CO-NP EXPTIME O(1)? ⇧P
2 ⇧P

3? PSPACE EXPTIME

acyclic closed arbitrary CO-NP PSPACE O(1)? ⇧P
2 ⇧P

3? PSPACE PSPACE

Table 7: Computational complexity of checking stability in rowo DABPs for LCQ, CQ, CQ¬, and FO queries. The measures are
matching. †- the problem is CO-NP-complete if the query languages is LCQ, ⇧P

2-complete if CQ, ⇧P
2-complete if CQ¬, and undecid-

able if FO. Similarly for ‡.

Rules Net Semantics Configuration Data Process LCQ CQ CQ¬ FO Combined

normal (a)cyclic open arbitrary in AC0 CO-NP O(1)? ⇧P
2 ⇧P

3? UNDEC. CO-NP /⇧P
2 /⇧P

3? / UNDEC.†
(a)cyclic open fresh in AC0 CO-NP O(1)? ⇧P

2 ⇧P
3? UNDEC. CO-NP /⇧P

2 /⇧P
3? / UNDEC.†

cyclic closed arbitrary in AC0 CO-NP O(1)? ⇧P
2 ⇧P

3? PSPACE CO-NP /⇧P
2 /⇧P

3? / PSPACE‡
acyclic closed arbitrary in AC0 CO-NP O(1)? ⇧P

2 ⇧P
3? PSPACE CO-NP /⇧P

2 /⇧P
3? / PSPACE‡

positive (a)cyclic open arbitrary in AC0 CO-NP O(1)? ⇧P
2 ⇧P

3? UNDEC. CO-NP /⇧P
2 /⇧P

3? / UNDEC.†
(a)cyclic open fresh in AC0 CO-NP O(1)? ⇧P

2 ⇧P
3? UNDEC. CO-NP /⇧P

2 /⇧P
3? / UNDEC.†

cyclic closed arbitrary in AC0 CO-NP O(1)? ⇧P
2 ⇧P

3? PSPACE CO-NP /⇧P
2 /⇧P

3? / PSPACE‡
acyclic closed arbitrary in AC0 CO-NP O(1)? ⇧P

2 ⇧P
3? PSPACE CO-NP /⇧P

2 /⇧P
3? / PSPACE‡

Given a graph with k transitions, we observe executions that tra-
verse as much as possible different transitions, that gives execu-
tions that can produce the most new atoms. Nevertheless, such ex-
ecutions need not to traverse a single transition more then k times
in order to “reach” all transitions. Which means that it is enough

to consider executions that maximal length is k2. Now we can ana-
lyze stability in the same way we did it for acyclic case by encoding
all possible execution is nonrecursive Datalog.

21
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How complex is to check stability for Conjunctive Queries

Table 5: Computational complexity of checking stability in DABP for conjunctive queries. The measures are lower and upper
bounds.

Process Rules Process Net Semantics Configuration Data Process Query Combined

Normal Cyclic / Acyclic Open Arbitrary UNDEC. UNDEC. UNDEC. UNDEC.

Cyclic / Acyclic Open Fresh UNDEC. UNDEC. UNDEC. UNDEC.

Cyclic Closed Arbitrary CO-NP CO-NEXPTIME ⇧P
2 CO-NEXPTIME

Acyclic Closed Arbitrary CO-NP PSPACE ⇧P
2 PSPACE

Positive Cyclic / Acyclic Open Arbitrary CO-NP EXPTIME ⇧P
2 EXPTIME

Cyclic / Acyclic Open Fresh PTIME EXPTIME ⇧P
2 EXPTIME

Cyclic Closed Arbitrary CO-NP EXPTIME ⇧P
2 EXPTIME

Acyclic Closed Arbitrary CO-NP PSPACE ⇧P
2 PSPACE

Table 6: Computational complexity of checking stability in DABPs for LCQ, CQ, CQ¬, and FO queries. The measures are matching.
†- the problem is EXPTIME-complete if the query languages is LCQ, CQ or CQ¬, and undecidable if the query language is FO.

Rules Net Semantics Configuration Data Process LCQ CQ CQ¬ FO Combined

normal (a)cyclic open arbitrary UNDEC. UNDEC. O(1)? UNDEC. UNDEC. UNDEC. UNDEC.

(a)cyclic open fresh UNDEC. UNDEC. O(1)? UNDEC. UNDEC. UNDEC. UNDEC.

cyclic closed arbitrary CO-NP CO-NEXPTIME O(1)? ⇧P
2 ⇧P

3? PSPACE CO-NEXPTIME

acyclic closed arbitrary CO-NP PSPACE O(1)? ⇧P
2 ⇧P

3? PSPACE PSPACE

positive (a)cyclic open arbitrary CO-NP EXPTIME O(1)? ⇧P
2 ⇧P

3? UNDEC. EXPTIME†
(a)cyclic open fresh PTIME EXPTIME O(1)? ⇧P

2 ⇧P
3? UNDEC. EXPTIME†

cyclic closed arbitrary CO-NP EXPTIME O(1)? ⇧P
2 ⇧P

3? PSPACE EXPTIME

acyclic closed arbitrary CO-NP PSPACE O(1)? ⇧P
2 ⇧P

3? PSPACE PSPACE

Table 7: Computational complexity of checking stability in rowo DABPs for LCQ, CQ, CQ¬, and FO queries. The measures are
matching. †- the problem is CO-NP-complete if the query languages is LCQ, ⇧P

2-complete if CQ, ⇧P
2-complete if CQ¬, and undecid-

able if FO. Similarly for ‡.

Rules Net Semantics Configuration Data Process LCQ CQ CQ¬ FO Combined

normal (a)cyclic open arbitrary in AC0 CO-NP O(1)? ⇧P
2 ⇧P

3? UNDEC. CO-NP /⇧P
2 /⇧P

3? / UNDEC.†
(a)cyclic open fresh in AC0 CO-NP O(1)? ⇧P

2 ⇧P
3? UNDEC. CO-NP /⇧P

2 /⇧P
3? / UNDEC.†

cyclic closed arbitrary in AC0 CO-NP O(1)? ⇧P
2 ⇧P

3? PSPACE CO-NP /⇧P
2 /⇧P

3? / PSPACE‡
acyclic closed arbitrary in AC0 CO-NP O(1)? ⇧P

2 ⇧P
3? PSPACE CO-NP /⇧P

2 /⇧P
3? / PSPACE‡

positive (a)cyclic open arbitrary in AC0 CO-NP O(1)? ⇧P
2 ⇧P

3? UNDEC. CO-NP /⇧P
2 /⇧P

3? / UNDEC.†
(a)cyclic open fresh in AC0 CO-NP O(1)? ⇧P

2 ⇧P
3? UNDEC. CO-NP /⇧P

2 /⇧P
3? / UNDEC.†

cyclic closed arbitrary in AC0 CO-NP O(1)? ⇧P
2 ⇧P

3? PSPACE CO-NP /⇧P
2 /⇧P

3? / PSPACE‡
acyclic closed arbitrary in AC0 CO-NP O(1)? ⇧P

2 ⇧P
3? PSPACE CO-NP /⇧P

2 /⇧P
3? / PSPACE‡

Given a graph with k transitions, we observe executions that tra-
verse as much as possible different transitions, that gives execu-
tions that can produce the most new atoms. Nevertheless, such ex-
ecutions need not to traverse a single transition more then k times
in order to “reach” all transitions. Which means that it is enough

to consider executions that maximal length is k2. Now we can ana-
lyze stability in the same way we did it for acyclic case by encoding
all possible execution is nonrecursive Datalog.
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Encoding techniques for decidable DABPs
• Even for positive or closed semantics we may have unbounded executions

• Abstraction principle for positive DABPs under open semantics:
when checking stability it is enough to consider at most one fresh constant

• Now, only cycles may produce unbounded executions
• But we can produce at most exponentially many facts,

in particular at most const(B)sig(B) many
• Thus we need consider only exponentially long executions

We can guess an exponential long execution using Datalog
under stable model semantics (co-NExpTime)

Theorem
Let ω = o1,t1,o2,t2, . . . ,on,tn be an execution in B. Then one can construct a
Datalog program ΠB such that

◦ the execution ω generates ground atoms R1(s̄1), . . . ,Rn(s̄n), iff
◦ ΠB |=brave R̃1(ω̄, s̄1), . . . , R̃n(ω̄, s̄n)
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Encoding techniques for decidable DABPs (2)
• Acyclic DABPs under open semantics:

it is sufficient to consider polynomially many exponential executions

Compute all executions using recursive positive Datalog (ExpTime)

• Acyclic DABPs under closed Semantics: only polynomially long executions

Compute all executions using nonrecursive Datalog (PSpace)

Can we obtain interesting tractable cases?
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Read-Only Write-only DAPBs
• Split schema Σ into Read-only schema ΣR and Write-Only schema ΣW

• Execution conditions and bodies of writing rules are over ΣR

• Heads of writing rules are over ΣW

 ����
����


��	�
����

• Thus, objects cannot read what they have written

27 of 30



Read-Only Write-only DAPBs
• Split schema Σ into Read-only schema ΣR and Write-Only schema ΣW

• Execution conditions and bodies of writing rules are over ΣR

• Heads of writing rules are over ΣW

 ����
����


��	�
����

• Thus, objects cannot read what they have written

27 of 30



Read-Only Write-only DAPBs
• Split schema Σ into Read-only schema ΣR and Write-Only schema ΣW

• Execution conditions and bodies of writing rules are over ΣR

• Heads of writing rules are over ΣW

 ����
����


��	�
����

• Thus, objects cannot read what they have written

27 of 30



Read-Only Write-only DAPBs
• Split schema Σ into Read-only schema ΣR and Write-Only schema ΣW

• Execution conditions and bodies of writing rules are over ΣR

• Heads of writing rules are over ΣW

 ����
����


��	�
����

• Thus, objects cannot read what they have written

27 of 30



Read-Only Write-only DAPBs
• Split schema Σ into Read-only schema ΣR and Write-Only schema ΣW

• Execution conditions and bodies of writing rules are over ΣR

• Heads of writing rules are over ΣW

 ����
����


��	�
����

• Thus, objects cannot read what they have written

27 of 30



Checking stability in Read-Only Write-only DAPBs
• nicer complexities :)

Table 5: Computational complexity of checking stability in DABP for conjunctive queries. The measures are lower and upper
bounds.

Process Rules Process Net Semantics Configuration Data Process Query Combined

Normal Cyclic / Acyclic Open Arbitrary UNDEC. UNDEC. UNDEC. UNDEC.

Cyclic / Acyclic Open Fresh UNDEC. UNDEC. UNDEC. UNDEC.

Cyclic Closed Arbitrary CO-NP CO-NEXPTIME ⇧P
2 CO-NEXPTIME

Acyclic Closed Arbitrary CO-NP PSPACE ⇧P
2 PSPACE

Positive Cyclic / Acyclic Open Arbitrary CO-NP EXPTIME ⇧P
2 EXPTIME

Cyclic / Acyclic Open Fresh PTIME EXPTIME ⇧P
2 EXPTIME

Cyclic Closed Arbitrary CO-NP EXPTIME ⇧P
2 EXPTIME

Acyclic Closed Arbitrary CO-NP PSPACE ⇧P
2 PSPACE

Table 6: Computational complexity of checking stability in DABP for conjunctive queries. The measures are lower and upper
bounds.

Process Rules Process Net Semantics Configuration Data Process Query Combined

Normal Cyclic / Acyclic Open Arbitrary in AC0 CO-NP ⇧P
2 ⇧P

2

Cyclic / Acyclic Open Fresh in AC0 CO-NP ⇧P
2 ⇧P

2

Cyclic Closed Arbitrary in AC0 CO-NP ⇧P
2 ⇧P

2

Acyclic Closed Arbitrary in AC0 CO-NP ⇧P
2 ⇧P

2

Positive Cyclic / Acyclic Open Arbitrary in AC0 CO-NP ⇧P
2 ⇧P

2

Cyclic / Acyclic Open Fresh in AC0 CO-NP ⇧P
2 ⇧P

2

Cyclic Closed Arbitrary in AC0 CO-NP ⇧P
2 ⇧P

2

Acyclic Closed Arbitrary in AC0 CO-NP ⇧P
2 ⇧P

2

Table 7: Computational complexity of checking stability in DABPs for LCQ, CQ, CQ¬, and FO queries. The measures are matching.
†- the problem is EXPTIME-complete if the query languages is LCQ, CQ or CQ¬, and undecidable if the query language is FO.

Rules Net Semantics Configuration Data Process LCQ CQ CQ¬ FO Combined

normal (a)cyclic open arbitrary UNDEC. UNDEC. O(1)? UNDEC. UNDEC. UNDEC. UNDEC.

(a)cyclic open fresh UNDEC. UNDEC. O(1)? UNDEC. UNDEC. UNDEC. UNDEC.

cyclic closed arbitrary CO-NP CO-NEXPTIME O(1)? ⇧P
2 ⇧P

3? PSPACE CO-NEXPTIME

acyclic closed arbitrary CO-NP PSPACE O(1)? ⇧P
2 ⇧P

3? PSPACE PSPACE

positive (a)cyclic open arbitrary CO-NP EXPTIME O(1)? ⇧P
2 ⇧P

3? UNDEC. EXPTIME†
(a)cyclic open fresh PTIME EXPTIME O(1)? ⇧P

2 ⇧P
3? UNDEC. EXPTIME†

cyclic closed arbitrary CO-NP EXPTIME O(1)? ⇧P
2 ⇧P

3? PSPACE EXPTIME

acyclic closed arbitrary CO-NP PSPACE O(1)? ⇧P
2 ⇧P

3? PSPACE PSPACE

Given a graph with k transitions, we observe executions that tra-
verse as much as possible different transitions, that gives execu-
tions that can produce the most new atoms. Nevertheless, such ex-
ecutions need not to traverse a single transition more then k times
in order to “reach” all transitions. Which means that it is enough
to consider executions that maximal length is k2. Now we can ana-
lyze stability in the same way we did it for acyclic case by encoding

all possible execution is nonrecursive Datalog.

Theorem 12 (Data Complexity Closed Rowo). Checking query
stability in rowo DABPs under open semantics is in AC0 in data
complexity.

21

• Checking Stability in rowo DABPs is FO-rewritable

System

+  Database
Business 
Proces

Q Stable?

rewrite

System

Database
SQLQuery true?
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Future Work

We plan to consider
• More expressive queries, e.g., CQ with negation or FO;
• Stability of aggregate queries / aggregates in the process rules;
• Quantify instability ,

e.g., compute the minimal/maximal number of new answers;
• Other data quality aspects such as data timeliness and data currency .
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Thank you!
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