Query Stability in Data-aware Business Processes*

Ognjen Savkovic
unibz
Free University of Bozen-Bolzano

joint work with
Elisa Marengo and Werner Nutt

EPCL PhD Workshop, April 2014, Dresden

*Supported by the project MAGIC, funded by the Province of Bozen-Bolzano

Students at Free University of Bozen-Bolzano (FUB)

2 of 30

Students at Free University of Bozen-Bolzano (FUB)

e FUB has around 3,500 students

2 of 30

Students at Free University of Bozen-Bolzano (FUB)

e FUB has around 3,500 students
o Dean of the Faculty of Computer Science: “Every student is a precious flower”

2 of 30

Students at Free University of Bozen-Bolzano (FUB)

e FUB has around 3,500 students
o Dean of the Faculty of Computer Science: “Every student is a precious flower”

2 of 30

Statistical Report about the Enrolled Students at FUB

Faculty of Economics Student places | Enroliments Enrollments %
2012/ 2013 2011/ 2012 2012/ 2013
Bachelor in Economics and Management 20.78%
Bachelor in Tourism, Sport and Event Management 74.51%
Bachelor in Economics and Social Sciences 17.24%
Master in Entrepreneurship and Innovation 114.29%
Master in Economics and Management of the public sector 22.73%
Sum| 41.45%
Faculty of Computer Science S;l:)l:.eznt ;:)a;:;s :;;:";“ze;;; :;;;";“ze;;; %
Bachelor in Computer Science and Engineering 30.43%
Master of Science in Computer Science -44.44%
PhD in Computer Science #VALUE!
Sum| -25.37%

3 0of 30

How Reliable are the Figures in the Report?

‘Studen laces
2012 2013 | 2011/

¢ How reliable (stable) are the figures that we see?

4 of 30

How Reliable are the Figures in the Report?

Student i
2012,

2015 | 2011/

¢ How reliable (stable) are the figures that we see?

e What are the main factors that determine how the data
may change in the future?

4 of 30

How Reliable are the Figures in the Report?

Student i
2012,

2015 | 2011/

¢ How reliable (stable) are the figures that we see?

e What are the main factors that determine how the data
may change in the future?

&) Look at the Business Processes that generates and manipulates data.

4 of 30

Student Registration Processes at FUB

Affiliated Late Student App
S Addmitted o (het:k | v [Registered]
Addimitted —— -
Deadline Affiliated on

Time

Affiliated

Program Accept App

Mot Amang
Addmitted

Academic
Check

Check
Application

Reject App

Regularon
Time

Regular
Program

Check Regular
Deadline

Student App - Regular
[Cpen] r : Late

Student App
[Rejected]

5 of 30

What are Business Processes (BPs)?

6 of 30

What are Business Processes (BPs)?

e BPs are sequence of connected activities
organized to accomplish certain goal

o e.g., student registration process

6 of 30

What are Business Processes (BPs)?

e BPs are sequence of connected activities
organized to accomplish certain goal

o e.g., student registration process
e Several standardized languages
o e.g., BPMN, BPEL

6 of 30

What are Business Processes (BPs)?

e BPs are sequence of connected activities
organized to accomplish certain goal

o e.g., student registration process

e Several standardized languages
o e.g., BPMN, BPEL

¢ Exist execution engines that executes them
o e.g., jBMN

6 of 30

What are Business Processes (BPs)?

e BPs are sequence of connected activities
organized to accomplish certain goal

o e.g., student registration process

e Several standardized languages
o e.g., BPMN, BPEL

¢ Exist execution engines that executes them
o e.g., jBMN

! What BPs fail to represent?

6 of 30

What are Business Processes (BPs)?

e BPs are sequence of connected activities
organized to accomplish certain goal

o e.g., student registration process

e Several standardized languages
o e.g., BPMN, BPEL

¢ Exist execution engines that executes them
o e.g., jBMN

! What BPs fail to represent?

e BPs fail to model interaction with databases

o Formal BPs models, e.g. Petri Nets, traditionally represent data in a limited way
o In BPEL operations on the database are hidden in the code

6 of 30

What are Business Processes (BPs)?

e BPs are sequence of connected activities
organized to accomplish certain goal
o e.g., student registration process
e Several standardized languages
o e.g., BPMN, BPEL
¢ Exist execution engines that executes them
o e.g., jBMN

! What BPs fail to represent?

e BPs fail to model interaction with databases

o Formal BPs models, e.g. Petri Nets, traditionally represent data in a limited way
o In BPEL operations on the database are hidden in the code

e However, data is often the main driver when executing BPs

o E.g., a student can register for a program
only if the student was firstly admitted to the program

6 of 30

Property of Query Stability

Query Stability

Informally, that is when for a given query @ and a business process % that
manipulates data the query answer of Q does not change for all future
transformations of data according to 4.

7 of 30

Property of Query Stability

Query Stability

Informally, that is when for a given query @ and a business process % that
manipulates data the query answer of Q does not change for all future
transformations of data according to 4.

We would like to answer the following questions

e Is query Q stable (from now)?

7 of 30

Property of Query Stability

Query Stability

Informally, that is when for a given query @ and a business process % that
manipulates data the query answer of Q does not change for all future
transformations of data according to 4.

We would like to answer the following questions

e Is query Q stable (from now)?

now

e If not, is there a time point from which @ becomes stable?

7 of 30

Property of Query Stability

Query Stability

Informally, that is when for a given query @ and a business process % that
manipulates data the query answer of Q does not change for all future
transformations of data according to 4.

We would like to answer the following questions

e Is query Q stable (from now)?

now
e If not, is there a time point from which @ becomes stable?

| |
l I

now t

e What are the time intervals in which Q is stable?

7 of 30

Outline
Data-aware Business Processes (DABPs) model
Query Stability

Reasoning about Query Stability in DABPs

Business Process

; Database ’

8 of 30

Table of Contents

Data-aware Business Processes (DABPs) model

9 of 30

Data-aware Business Processes (DABPs) model

e A DABP % consists of two parts:
a static Process Part &7 and a dynamic Data Part ¥

10 of 30

Data-aware Business Processes (DABPs) model

e A DABP % consists of two parts:
a static Process Part &7 and a dynamic Data Part ¥

e Process Part describes how the data from the data part is read and written

10 of 30

Data-aware Business Processes (DABPs) model
e A DABP % consists of two parts:
a static Process Part &7 and a dynamic Data Part ¥
e Process Part describes how the data from the data part is read and written

e Data part contains database instance and
the set of currently active process instances

10 of 30

Data-aware Business Processes (DABPs) model
e A DABP % consists of two parts:
a static Process Part &7 and a dynamic Data Part ¥
e Process Part describes how the data from the data part is read and written

e Data part contains database instance and
the set of currently active process instances

Active System

Instances

Unstarted
Instances

Business Process

10 of 30

Data-aware Business Processes (DABPs) model
e A DABP % consists of two parts:
a static Process Part &7 and a dynamic Data Part ¥
e Process Part describes how the data from the data part is read and written

e Data part contains database instance and
the set of currently active process instances

Active System

Instances

Unstarted
Instances

Business Process

New Information in the system is brought with new process instances

10 of 30

Process Part in DABPs

o Process Part & = (N, L) is defined with process net N and data rules L

11 of 30

Process Part in DABPs

o Process Part & = (N, L) is defined with process net N and data rules L
o Process net N is represented as a directed graph (P, T)
where T are transitions and P are places with a spacial place start € P

11 of 30

Process Part in DABPs

o Process Part & = (N, L) is defined with process net N and data rules L
o Process net N is represented as a directed graph (P, T)
where T are transitions and P are places with a spacial place start € P

Example

11 of 30

Process Part in DABPs (2)

Data rules L labels every transition t € T with

12 of 30

Process Part in DABPs (2)

Data rules L labels every transition t € T with

e Execution condition E;, a Boolean query that conditions the traversal of t, and

12 of 30

Process Part in DABPs (2)

Data rules L labels every transition t € T with
e Execution condition E;, a Boolean query that conditions the traversal of t, and

e Writing rule W; = Q:(X) — R(X), a rule that specifies which data is written

12 of 30

Process Part in DABPs (2)

Data rules L labels every transition t € T with

e Execution condition E;, a Boolean query that conditions the traversal of t, and
e Writing rule W; = Q¢(X) — R(X), a rule that specifies which data is written

e Here, E; and Q: are CQ with safe negation over signature XU/ and R€ X

12 of 30

Process Part in DABPs (2)

Data rules L labels every transition t € T with
e Execution condition E;, a Boolean query that conditions the traversal of t, and
e Writing rule W; = Q¢(X) — R(X), a rule that specifies which data is written

e Here, E; and Q: are CQ with safe negation over signature XU/ and R€ X
e Relation / is the input relation that describes process instance

o e.g., student application form /(’J. Smith’,"EMCL’,' Thursday 20t October, 2016')
(the last [-argument is reserved for the instance timestamp)

12 of 30

Running example: process part

13 of 30

a_late

admitted

a_ontim

affiliated

ordinary

accept

acad
check

o_late

register
end

o_ontime

Transition Execution Condition E;
affiliated I(s,p,), StudyPlan(p, affil’, m)
ordinary I(s,p,), StudyPlan(p, ord’,m), —StudyPlan(s, affil’, p)
admitted 1(s,p,T), Admitted(s,p)
refuse I(s,p,), Admitted(s,p), StudyPlan(p,'ord’,m)
a_late I(s,p,), Deadline('affil’,d), ©>d
a_ontime [I(s,p,7), Deadline(’affil’,d), T < d
o_late I(s,p,), Deadline(’affil',d), t>d
o_late I(s,p,7), Deadline('ord’,d), ©>d
o_ontime I(s,p,T), Deadline('ord’,d), 1< d
Writing Rule W;
register I(s,p,), StudyPlan(p,r,m) — Registered(s, m,p)

Data Part in DABPs

Data Part ¢, called configuration, is defined with (D, O, M, 1) where

14 of 30

Data Part in DABPs

Data Part ¢, called configuration, is defined with (D, O, M, 1) where

e Database instance D over schema X

14 of 30

Data Part in DABPs

Data Part ¢, called configuration, is defined with (D, O, M, 1) where
o Database instance D over schema &

e Set of process instances O (called data objects)

14 of 30

Data Part in DABPs

Data Part ¢, called configuration, is defined with (D, O, M, 1) where
o Database instance D over schema &
e Set of process instances O (called data objects)

e Mapping function M that for every data object 0o € O
determines current place in the process Mp(o) =p € P and
a single /-record Ms(0) = I(3) of the input relation | ¢ X

e Current timestamp 7 of the configuration

14 of 30

Running Example: Initial Configuration

e Database instance D

StudyPlan
program registr. master
emSE afhil mscCS
emCL affil mscCS
emCL reg mscCS
econ reg mscECO
Admitted
student | program
bob emCL
mary emSE
Deadline
registr. date

reg 15 Oct
affil 1t Dec

Registered
student [master | program
bob | mscCS | emCL

15 of 30

Running Example: Initial Configuration

e Database instance D

StudyPlan
program registr. master
emSE afhil mscCS
emCL affil mscCS
emCL reg mscCS
econ reg mscECO
Admitted
student | program
bob emCL
mary emSE
Deadline
registr. date
reg 15 Oct
affil 1t Dec
Registered

student [master | program

bob | mscCS |

15 of 30

emCL

e Data objects O = {01, 02,03}

Running Example: Initial Configuration

e Database instance D e Data objects O = {o01,02,03}
StudyPlan .
program registr. master ° Mappmg M
emSE affil mscCS .
emCL affil mscCS Mapping
emCL reg mscCS id I-record place
econ reg mscECO o (john, db.) -
o (alice, econ, 1) end
Admitted o1 (bob, emCL, 1) end
student | program
bob emCL
mary emSE
Deadline
registr. date
reg 15 Oct
affil 1t Dec

Registered
student [master | program
bob | mscCS | emCL

15 of 30

Running Example: Initial Configuration

e Database instance D

StudyPlan

program registr.

master

emSE

emCL

emCL
econ

Admitted

afhil
affil
reg
reg

mscCS

mscCS

mscCS
mscECO

student

program

bob
mary

Deadline

registr.

reg
affil

Registered

emCL
emSE

date
15 Oct

1t Dec

student [master | program

bob | mscCS |

15 of 30

emCL

e Data objects O = {01, 02,03}

e Mapping M
Mapping
id I-record place
03 (john, db, 13) start
o (alice, econ, 1) end

o1 (bob, emCL, 1) end

e Current time
7 = "Thursday 20™ October, 2016’

Execution of DABPs

There are two kinds of atomic execution in DABPs

e Traversal of a transition in the net by an object

E, //E\\x
OnnOlaad@nO
An object o with /-record /(5) can traverse transition t if E,(DU/(3)) = true
+ the database instance is updated so D' = DU W,(DUI(3))

16 of 30

Execution of DABPs

There are two kinds of atomic execution in DABPs

e Traversal of a transition in the net by an object

E, //E\\x
OnnOlaad@nO
An object o with /-record /(5) can traverse transition t if E,(DU/(3)) = true
+ the database instance is updated so D' = DU W,(DUI(3))

e Introduction of a fresh object o with a fresh /-record

PN

'S
I(’New John’,”JEMCL’, 'Now’)

’
’

start start

+ the configuration timestamp 7’ is set to be the timestamps of o

16 of 30

Execution of DABPs

There are two kinds of atomic execution in DABPs

e Traversal of a transition in the net by an object

E, //E\\x
OnnOlaad@nO
An object o with /-record /(5) can traverse transition t if E,(DU/(3)) = true
+ the database instance is updated so D' = DU W,(DUI(3))

e Introduction of a fresh object o with a fresh /-record

PN

'S
I(’New John’,”JEMCL’, 'Now’)

’
’

start start

+ the configuration timestamp 7’ is set to be the timestamps of o

e In both cases a new configuration ¢’ = (D', 0', M’ t') is obtained as a result

16 of 30

Execution of DABPs

There are two kinds of atomic execution in DABPs

e Traversal of a transition in the net by an object

Et //E\\\A
OnnOlaad@nO
An object o with /-record /(5) can traverse transition t if E,(DU/(3)) = true
+ the database instance is updated so D' = DU W,(DUI(3))

e Introduction of a fresh object o with a fresh /-record

PN

'S
I(’New John’,”JEMCL’, 'Now’)

’
’

start start

+ the configuration timestamp 7’ is set to be the timestamps of o
e In both cases a new configuration ¢’ = (D', 0', M’ t') is obtained as a result

o Executions in DABPs are finite sequences of atomic executions

16 of 30

Table of Contents

Query Stability

17 of 30

Query Stability Formally

® Query Q is stable in DABP % = (£,%¢) with database D
if for any reachable configuration with the database D’

Q(D)=Q(D')

18 of 30

Running Example: Stability of Queries

® Qs : Who are the registered students at the Faculty of Computer Science?
e.g., Qcs(x) < Registered(x, 'mscCS’, p)

® Qeco : Who are the registered students at the Faculty of Economics?
e.g., Qeco(x) < Registered(x, mscECO’, p)

Faculty of Economics 5;‘;“1’2"; | || S % Stable?| < 1stoct |1stOct-1stDec| > 1stDec
[Bachelor in Economics and Management 20,78% NO! YES! YES!
[Bachelor in Tourism, Sport and Event Management 74,51% NO! YES! YES!
[Bachelor in Economics and Social Sciences 17,24% NO! YES! YES!
[Master in Entrepreneurship and Innovation 114,29% NO! YES! YES!
[Master in Economics and Management of the public sector 22,73% NO! YES! YES!
Suml| 41,45% NO! YES! YES!

Faculty of Computer Science e ot o] | Woaray o % <1stOct |1stOct-1stDec| > 1stDec
[Bachelor in Computer Science and Engineering 30,43% NO! YES! YES!
[Master of Science in Computer Science -44,44% NO! NO! YES!
PhD in Computer Science #VALUE! NO! NO! YES!
-25,37% NO! NO! YES!

19 of 30

Table of Contents

Reasoning about Query Stability in DABPs

20 of 30

Reasoning about Query Stability in DABP

e We studied several types of processes types that differ in

21 of 30

Reasoning about Query Stability in DABP

e We studied several types of processes types that differ in
e Semantics: Open or Closed

21 of 30

Reasoning about Query Stability in DABP

e We studied several types of processes types that differ in
e Semantics: Open or Closed
o Open semantics: new process instance can start at any moment

21 of 30

Reasoning about Query Stability in DABP

e We studied several types of processes types that differ in
e Semantics: Open or Closed

o Open semantics: new process instance can start at any moment
o Closed semantics: no new process instance can be started,
thus only “unfinished” objects can impact stability

21 of 30

Reasoning about Query Stability in DABP

e We studied several types of processes types that differ in
e Semantics: Open or Closed

o Open semantics: new process instance can start at any moment
o Closed semantics: no new process instance can be started,
thus only “unfinished” objects can impact stability

e Initial Configuration: Fresh or Arbitrary

21 of 30

Reasoning about Query Stability in DABP

e We studied several types of processes types that differ in
e Semantics: Open or Closed

o Open semantics: new process instance can start at any moment
o Closed semantics: no new process instance can be started,
thus only “unfinished” objects can impact stability

e Initial Configuration: Fresh or Arbitrary
o Fresh: the configuration does not contain any object

21 of 30

Reasoning about Query Stability in DABP

e We studied several types of processes types that differ in
e Semantics: Open or Closed

o Open semantics: new process instance can start at any moment
o Closed semantics: no new process instance can be started,
thus only “unfinished” objects can impact stability

e Initial Configuration: Fresh or Arbitrary

o Fresh: the configuration does not contain any object
o Arbitrary: no assumption on the presence or absence of objects

21 of 30

Reasoning about Query Stability in DABP

e We studied several types of processes types that differ in
e Semantics: Open or Closed

o Open semantics: new process instance can start at any moment
o Closed semantics: no new process instance can be started,
thus only “unfinished” objects can impact stability

e Initial Configuration: Fresh or Arbitrary

o Fresh: the configuration does not contain any object
o Arbitrary: no assumption on the presence or absence of objects

e Process Net: Cyclic or Acylcic

21 of 30

Reasoning about Query Stability in DABP

e We studied several types of processes types that differ in
e Semantics: Open or Closed

o Open semantics: new process instance can start at any moment
o Closed semantics: no new process instance can be started,
thus only “unfinished” objects can impact stability

e Initial Configuration: Fresh or Arbitrary
o Fresh: the configuration does not contain any object
o Arbitrary: no assumption on the presence or absence of objects

e Process Net: Cyclic or Acylcic

Process Rules: Normal(w/ negation) or or Positive(w/o negation)

21 of 30

How complex is to check stability for Conjunctive Queries

¢ Undcidable in the most general case :(
even in the data and query complexity

22 of 30

How complex is to check stability for Conjunctive Queries

¢ Undcidable in the most general case :(
even in the data and query complexity

P
O-g-. (¢~
S

—\—

[0}

22 of 30

How complex is to check stability for Conjunctive Queries

¢ Undcidable in the most general case :(
even in the data and query complexity

P
O-g-. (¢~
S

—\—

[0}

e Still, many decidable cases :) by restricting DAPBs to

22 of 30

How complex is to check stability for Conjunctive Queries

¢ Undcidable in the most general case :(
even in the data and query complexity

P
O-g-. (¢~
S

—\—

[0}

e Still, many decidable cases :) by restricting DAPBs to
o closed semantics (no fresh instances are allowed, so obvious :)

22 of 30

How complex is to check stability for Conjunctive Queries

¢ Undcidable in the most general case :(
even in the data and query complexity

P
O-g-. (¢~
S

—\—

[0}

e Still, many decidable cases :) by restricting DAPBs to

o closed semantics (no fresh instances are allowed, so obvious :)
o positive rules (little less obvious)

22 of 30

How complex is to

check stability for Conjunctive Queries

Process Rules Process Net Semantics Configuration Data Process Query Combined

Normal Cyclic/Acyclic Open Arbitrary UNDEC. UNDEC. UNDEC. UNDEC.
Cyclic/Acyclic Open Fresh UNDEC. UNDEC. UNDEC. UNDEC.
Cyclic Closed Arbitrary Cco-NP CcO-NEXPTIME oS CcO-NEXPTIME
Acyclic Closed Arbitrary Cco-NP PSPACE jais PSPACE

Positive Cyclic/Acyclic Open Arbitrary Cco-NP EXPTIME jats EXPTIME
Cyclic/Acyclic Open Fresh PTIME EXPTIME jais EXPTIME
Cyclic Closed Arbitrary CO-NP EXPTIME jats EXPTIME
Acyclic Closed Arbitrary Cco-NP PSPACE jais PSPACE

23 of 30

How complex is to check stability for Conjunctive Queries

Process Rules Process Net Semantics Configuration Data Process Query Combined

Normal Cyclic/Acyclic Open Arbitrary UNDEC. UNDEC. UNDEC. UNDEC.
Cyclic/Acyclic Open Fresh UNDEC. UNDEC. UNDEC. UNDEC
Cyclic Closed Arbitrary co-NP CcO-NEXPTIME 5 CcO-NEXPTIME
Acyclic Closed Arbitrary Cco-NP PSPACE j5ts PSPACE

Positive Cyclic/Acyclic Open Arbitrary CO-NP EXPTIME juts EXPTIME
Cyclic/Acyclic Open Fresh PTIME EXPTIME juts EXPTIME
Cyclic Closed Arbitrary CO-NP EXPTIME jnts EXPTIME
Acyclic Closed Arbitrary CO-NP PSPACE 5 PSPACE

24 of 30

Encoding techniques for decidable DABPs

e Even for positive or closed semantics we may have unbounded executions

25 of 30

Encoding techniques for decidable DABPs

e Even for positive or closed semantics we may have unbounded executions

e Abstraction principle for positive DABPs under open semantics:
when checking stability it is enough to consider at most one fresh constant

25 of 30

Encoding techniques for decidable DABPs

e Even for positive or closed semantics we may have unbounded executions

e Abstraction principle for positive DABPs under open semantics:
when checking stability it is enough to consider at most one fresh constant

e Now, only cycles may produce unbounded executions

25 of 30

Encoding techniques for decidable DABPs

e Even for positive or closed semantics we may have unbounded executions

e Abstraction principle for positive DABPs under open semantics:
when checking stability it is enough to consider at most one fresh constant

e Now, only cycles may produce unbounded executions

e But we can produce at most exponentially many facts,
in particular at most const(%)%&(%) many

25 of 30

Encoding techniques for decidable DABPs

e Even for positive or closed semantics we may have unbounded executions

e Abstraction principle for positive DABPs under open semantics:
when checking stability it is enough to consider at most one fresh constant

e Now, only cycles may produce unbounded executions

e But we can produce at most exponentially many facts,
in particular at most const(%)%&(%) many

e Thus we need consider only exponentially long executions

25 of 30

Encoding techniques for decidable DABPs

e Even for positive or closed semantics we may have unbounded executions

e Abstraction principle for positive DABPs under open semantics:
when checking stability it is enough to consider at most one fresh constant

e Now, only cycles may produce unbounded executions

e But we can produce at most exponentially many facts,
in particular at most const(%)%&(%) many

e Thus we need consider only exponentially long executions

&) We can guess an exponential long execution using Datalog
under stable model semantics (CO-NExXPTIME)

25 of 30

Encoding techniques for decidable DABPs

e Even for positive or closed semantics we may have unbounded executions

e Abstraction principle for positive DABPs under open semantics:
when checking stability it is enough to consider at most one fresh constant

e Now, only cycles may produce unbounded executions

e But we can produce at most exponentially many facts,
in particular at most const(%)%&(%) many

e Thus we need consider only exponentially long executions

&) We can guess an exponential long execution using Datalog
under stable model semantics (CO-NExXPTIME)

25 of 30

Encoding techniques for decidable DABPs

e Even for positive or closed semantics we may have unbounded executions

e Abstraction principle for positive DABPs under open semantics:
when checking stability it is enough to consider at most one fresh constant

e Now, only cycles may produce unbounded executions

e But we can produce at most exponentially many facts,
in particular at most const(%)%&(%) many

e Thus we need consider only exponentially long executions

&) We can guess an exponential long execution using Datalog
under stable model semantics (CO-NExXPTIME)

Theorem
Let ® = 01,t1,00,12,..., on,tn be an execution in 2. Then one can construct a

Datalog program Mg such that

25 of 30

Encoding techniques for decidable DABPs

e Even for positive or closed semantics we may have unbounded executions

e Abstraction principle for positive DABPs under open semantics:
when checking stability it is enough to consider at most one fresh constant

e Now, only cycles may produce unbounded executions

e But we can produce at most exponentially many facts,
in particular at most const(%)%&(%) many

e Thus we need consider only exponentially long executions

&) We can guess an exponential long execution using Datalog
under stable model semantics (CO-NExXPTIME)

Theorem
Let @ = 01,t1,02,t2,...,0p,tn be an execution in 8. Then one can construct a

Datalog program Mg such that
o the execution @ generates ground atoms Ri(31),...,Rn(5,), iff

25 of 30

Encoding techniques for decidable DABPs

e Even for positive or closed semantics we may have unbounded executions

e Abstraction principle for positive DABPs under open semantics:
when checking stability it is enough to consider at most one fresh constant

e Now, only cycles may produce unbounded executions

e But we can produce at most exponentially many facts,
in particular at most const(%)%&(%) many

e Thus we need consider only exponentially long executions

&) We can guess an exponential long execution using Datalog
under stable model semantics (CO-NExXPTIME)

Theorem
Let @ = 01,t1,02,t2,...,0p,tn be an execution in 8. Then one can construct a
Datalog program Mg such that

o the execution @ generates ground atoms Ri(51),...,Rn(5,), iff

© n%’ ':brave Rl(@,§1)7...,kn(6),§n)

25 of 30

Encoding techniques for decidable DABPs (2)

e Acyclic DABPs under open semantics:
it is sufficient to consider polynomially many exponential executions

26 of 30

Encoding techniques for decidable DABPs (2)

e Acyclic DABPs under open semantics:
it is sufficient to consider polynomially many exponential executions

&> Compute all executions using recursive positive Datalog (ExpTIME)

26 of 30

Encoding techniques for decidable DABPs (2)

e Acyclic DABPs under open semantics:
it is sufficient to consider polynomially many exponential executions

&> Compute all executions using recursive positive Datalog (ExpTIME)

e Acyclic DABPs under closed Semantics: only polynomially long executions

26 of 30

Encoding techniques for decidable DABPs (2)

e Acyclic DABPs under open semantics:
it is sufficient to consider polynomially many exponential executions

&> Compute all executions using recursive positive Datalog (ExpTIME)
e Acyclic DABPs under closed Semantics: only polynomially long executions

&> Compute all executions using nonrecursive Datalog (PSPACE)

26 of 30

Encoding techniques for decidable DABPs (2)

e Acyclic DABPs under open semantics:
it is sufficient to consider polynomially many exponential executions

&> Compute all executions using recursive positive Datalog (ExpTIME)
e Acyclic DABPs under closed Semantics: only polynomially long executions

&> Compute all executions using nonrecursive Datalog (PSPACE)

@ Can we obtain interesting tractable cases?

26 of 30

Read-Only Write-only DAPBs

e Split schema X into Read-only schema i and Write-Only schema Xy

27 of 30

Read-Only Write-only DAPBs

e Split schema X into Read-only schema i and Write-Only schema Xy

e Execution conditions and bodies of writing rules are over X

27 of 30

Read-Only Write-only DAPBs

e Split schema X into Read-only schema i and Write-Only schema Xy
e Execution conditions and bodies of writing rules are over X

o Heads of writing rules are over Xy

27 of 30

Read-Only Write-only DAPBs

e Split schema X into Read-only schema i and Write-Only schema Xy

e Execution conditions and bodies of writing rules are over X

W read Q> wmte
only only

o Heads of writing rules are over Xy

27 of 30

Read-Only Write-only DAPBs

e Split schema X into Read-only schema i and Write-Only schema Xy

e Execution conditions and bodies of writing rules are over X

W read Q> wmte
only only

e Thus, objects cannot read what they have written

o Heads of writing rules are over Xy

27 of 30

Checking stability in Read-Only Write-only DAPBs

* nicer complexities :)

Process Rules Process Net Semantics Configuration Data Process Query Combined

Normal Cyclic/Acyclic Open Arbitrary inAC® Co-NP jais jats
Cyclic/Acyclic Open Fresh inAC® co-NP i JiEs
Cyclic Closed Arbitrary in AC® Co-NP jats jats
Acyclic Closed Arbitrary in AC® co-NP jits jots

Positive Cyclic/Acyclic Open Arbitrary in AC® Co-NP jats jats
Cyclic/Acyclic Open Fresh inAC® co-NP i i
Cyclic Closed Arbitrary in AC® Co-NP jats jats
Acyclic Closed Arbitrary in AC® co-NP jits 15

28 of 30

Checking stability in Read-Only Write-only DAPBs

* nicer complexities :)

Process Rules Process Net Semantics Configuration Data Process Query Combined

Normal Cyclic/Acyclic Open Arbitrary inAC® Co-NP jais jats
Cyclic/Acyclic Open Fresh inAC® co-NP i JiEs
Cyclic Closed Arbitrary in AC® Co-NP jats jats
Acyclic Closed Arbitrary in AC® co-NP jits jots

Positive Cyclic/Acyclic Open Arbitrary in AC® Co-NP jats jats
Cyclic/Acyclic Open Fresh inAC® co-NP i i
Cyclic Closed Arbitrary in AC® Co-NP jats jats
Acyclic Closed Arbitrary in AC® co-NP jits 15

System - i System

. —— Sk
- = Q Stable? SQLQuery true?
4 Busiess i) »
Database Proces A Database <
Q> rewrite

28 of 30

Future Work

We plan to consider
o More expressive queries, e.g., CQ with negation or FO;
e Stability of aggregate queries | aggregates in the process rules;

o Quantify instability,
e.g., compute the minimal/maximal number of new answers;

e Other data quality aspects such as data timeliness and data currency.

29 of 30

Thank you!

30 of 30

So does dnyone have
any tves\-"o'\$7

	Data-aware Business Processes (DABPs) model
	Query Stability
	Reasoning about Query Stability in DABPs

