DATA QUALITY AWARE QUERYING*

Ognjen Savković Free University of Bozen-Bolzano, Italy

* Supported by the project MAGIC, funded by the Province of Bozen-Bolzano

What is Data Quality?

- Data is of a high quality if it is fit for intended uses
- Typically, **Data Quality** is considered as a problem of "**dirty data**". E.g.,
 - **Unclean data**, *student('John J.','Street*^#@0','+00399#)?:<'*), or
 - **Missing values**, *student('John J.',NULL,NULL)*
- But there are also more subtle Data Quality aspects
 - **Data Completeness** (we cannot see what is missing)
 - **Data Stability** (data that we see is updating frequently)

QUERY COMPLETENESS REASONING UNDER CONSTRAINTS

joint work with Werner Nutt, Sergey Paramonov

Bolzano is in the Province of South Tyrol

- Trilingual autonomous province in the North of Italy
 - Has its own school administration

Ex: School Data Management in Bolzano

- School Database is decentralized
- Some data is inserted voluntarily

Statistical Reports

Running Example: School Schema

pupil(name, ccode, sname)
 e.g., pupil(john, a1, goethe)

class(ccode, sname, level, branch)
 e.g., class(a1, gothe, 1, science)

takes(name, activity)
 e.g., takes(john, chess)

Query Completeness Reasoning under Constraints

- We want to reason about Query Completeness over
 - Partially complete database and
 - Constraints that hold over the database

Formalization: Incomplete Database

- Incomplete database *D* is a pair $D = (D^i, D^a)$ [Motro 1989]
 - Dⁱ ideal database (complete facts that holds in the real world)
 - D^a available database (actual database)

Semantics

if $(D^i, D^a) \models Compl(Q)$ then $Q(D^i) = Q(D^a)$

Table Completeness Statements

A table completeness (TC) statement for a relation R is an expression

Compl($R(s_1, ..., s_n)$; G) [Halevy 96]

consisting of

• an R-atom $R(s_1,...,s_n)$

• a condition G is conjunction of atoms

The TC-statement $C = Compl(R(s_1,..., s_n); G)$ can be seen as a rule

$$r_{c} = R^{i}(s_{1},...,s_{n}), G^{i} \rightarrow R^{a}(s_{1},...,s_{n})$$

Semantics: $(D^{i}, D^{a}) \models C$ iff $(D^{i}, D^{a}) \models r_{C}$

TC-QC Reasoning Problem

• We want to decide (TC-QC entailment) "Does a set of table completeness (TC) statements C entail completeness of query Q (QC) ?"

 $\forall (D^{i}, D^{a})$ $(D^{i}, D^{a}) \models C \text{ iff } (D^{i}, D^{a}) \models Compl(Q)$

or shortly

 $C \models Compl(Q)$

T_C Operator

To $C = Compl(R(\underline{s}); G)$ we associate the query

 $Q_{C}(\underline{s}) := R(\underline{s})$, G

and the transformation on db instances

 $T_{C}(D) := \textcircled{R}(\underline{t}) \mid \underline{t} \in Q_{C}(D) \}$

For a set C of TC statements we define the transformation

 $T_{\mathcal{C}}(D) := \bigcup_{C \in \mathcal{C}} T_{C}(D)$

T_C Operator: Properties

- For a given (ideal) database D, operator T_C computes $T_C(D)$ such that
- (D, T_C(D)) is the least incomplete databases that satisfies C

In other words,

- 1. $(D, T_{C}(D)) \models C$ and
- 2. $(D^{i}, D^{a}) \models C \text{ iff } T_{C}(D^{i}) \subseteq D^{a}$

TC-QC: Characterization

Let

- C set of TC statements
- $Q(\underline{x}) := A1,...,An$ conjunctive query
- $D_Q :=$ *frozen version* of A1,...,An with θ

Theorem:

 $C \models Compl(Q)$ iff $\theta \underline{\mathbf{x}} \in Q(T_C(D_Q))^*$

Example: Plain Reasoning

- "Who are the pupils in class a1 in Goethe school that play chess?" Q_{a1g}(N) :- pupil(N, a1, goethe), takes(N, chess)
- "We have all pupil from a1 Goethe school"
 C_{a1}: Compl(pupil(N, a1, goethe) ; true)
- "We have all activity takers in Goethe school"
 C_{activg}: Compl(takes(N, A) ; pupil(N, C, goethe))
- Is Q_{a1g} complete given the completeness assumptions?

Example: Plain Reasoning(2)

- 1. Assume Q_{a1g} returns n' over D^i
- 1. Then, pupil(n', a1, goethe), takes(N, chess) $\in D^i$
- 1. Now, according C_{a1g} followspupil(n', a1, goethe) $\in D^a$ and, according C_{activg} followstakes(n', chess) $\in D^a$
- 2. Therefore, $n' \in Q_{a1g}(D^a)$, $\rightarrow Q_{a1g}$ is complete!

What if have schema constraints?

Schema Constraints

- We consider 2 kinds of constraints
- Foreign Keys (FKs)
 - "For every pupil record exists corresponding class record"
 - pupil[ccode, sname] ⊆ class[ccode, sname]
- Conditional Finite Doman Constraints (CFDCs)
 - "Science classes in Goethe school can be either a1 or b2"
 - class[sname=Goethe, branch=science][ccode] = {a1,b2}

TC-QC under Constraints

- \mathcal{K} is a set of PKs and FKs
- \mathcal{F} is a set of CFDCs
- $C \models_{\mathcal{K},\mathcal{F}} \text{Compl}(Q)$ (non-enforced FKs) $\forall (D^i, D^a)$: if $D^i \models \mathcal{F}$, $D^a \models \mathcal{F}$, and $D^i \models \mathcal{K}$ then $(D^i, D^a) \models C$ iff $(D^i, D^a) \models \text{Compl}(Q)$
- $C \models {}^{e}_{\mathcal{K},\mathcal{F}} \operatorname{Compl}(Q)$ (enforced FKs) $\forall (D^{i}, D^{a})$: if $D^{i} \models \mathcal{F}$, $D^{a} \models \mathcal{F}$ and $D^{i} \models \mathcal{K}$ and $D^{a} \models \mathcal{K}$ then $(D^{i}, D^{a}) \models C$ iff $(D^{i}, D^{a}) \models \operatorname{Compl}(Q)$

Example: Reasoning under non-enforced FKs

- "Who are the pupils in Goethe school?" $Q_g(N) := pupil(N, C, goethe)$
- "We have all pupil from a1 and b2 Goethe school"
 C_{a1}: Compl(pupil(N, a1, goethe) ; class(a1, goethe, L, B))
 C_{b2}: Compl(pupil(N, b2, goethe) ; class(b2, goethe, L, B))
- Can we conclude completness for Q_{gs}?

Example: Reasoning under non-enforced FKs (2)

Assume constraints

fk₁: pupil[ccode, sname] I class[ccode, sname]
cfdc₁: class[sname=goethe][ccode] = {a1,b2}

- 1. $n' \in Q_g(D^i)$, then pupil(n', c', goethe) $\in D^i$
- 1. From fk₁, class(c', goethe, $l_{c',goethe}$, $b_{c',goethe}$) $\in D^i$
- 2. From $cfdc_1$ follows that c'=a1 or c'=b2 in class-record
- 3. In either case, acc. C_{a1} and C_{b2} , follows pupil(n', c', goethe) $\in D^a$
- 1. Therefore, $n' \in Q_g(D^a)$, $\rightarrow Q_g$ is complete!

TC-QC under CSTRs: Characterization

- C and $Q(\underline{x}) := A1,...,An$ as before
- $\mathbf{\mathcal{K}}$ set of PKs and acyclic FKs
 - $Chase_{\kappa}$ oblivious chase
- **F** set of CFDCs
 - Γ set of all "maximal relevant" instantiations of $Chase_{\mathcal{K}}(D_Q)$ according \mathcal{F}

Theorem: The following are equivalent

- a) $C \models_{\mathcal{K},\mathcal{F}} \text{Compl}(Q)$
- b) $\gamma \theta \underline{\mathbf{x}}' \in Q(\gamma(T_C(\gamma(Chase_{\mathcal{K}}(D_Q))))) \text{ for all } \gamma \in \Gamma$
- * b) is a Π^{P_2} problem

Example: Reasoning under enforced FKs

• "Who are the science pupils in Goethe school?" $Q_{gs}(N) := pupil(N, C, goethe), class(C, goethe,L, science)$

- "We have all pupil from a1 and b2 Goethe school"
 C_{a1}: Compl(pupil(N, a1, goethe) ; class(a1, goethe, L, B))
 C_{b2}: Compl(pupil(N, b2, goethe) ; class(b2, goethe, L, B))
- And assume constraints

fk₁: pupil[ccode, sname] I class[ccode, sname]
cfdc₁: class[sname=goethe][ccode] = {a1,b2}

• Can we conclude completness for Q_{gs} ?

Example: Reasoning under enforced FKs (2)

- 1. $n' \in Q_{gs}(D^i)$, then pupil(n', c', goethe), class(c',goethe,l',science) $\in D^i$
- 1. From $cfdc_1$ follows that c'=a1 or c'=b2 in class-record
- 2. In either case, acc. C_{a1} and C_{b2} , follows pupil(n', c', goethe) $\in D^a$
- 3. From fk₁, class(c', goethe, $l_{c',goethe}$, $b_{c',goethe}$) $\in D^a$ (no!) Since $D^a \subseteq D^i$ it must be class(c',goethe,l',science) $\in D^a$
- 4. Therefore, $n' \in Q_{gs}(D^a)$, $\rightarrow Q_{gs}$ is complete!

Implementing Completeness Reasoning

- How can one implement completeness reasoning?
- Reminder: TC-QC ranges from NP to Π_{2}^{P}
- **SMT** (SAT modulo theories) solvers?
- ASP?
 - Receipt: Follow the characterization theorems

Encoding TC-QC into ASP

 "Freeze" Q_{a1g}(N) over ideal db pupil_i(n', a1, goethe). takes_i(n', chess).

- 2. Represent TCs as rules from ideal to available db pupil_a(N, a1, goethe) :- pupil_i(N, a1, goethe) takes_a(N, A) :- takes_i(N,A), pupil_i(N, C, goethe)
- Test completeness with "test predicate" on available db q_test :- pupil_a(N, a1, goethe), takes_i(N, chess)

C = Compl(Q) iff q_test is **entailed** by the program

/

THE ..

~		ayık-demo.int.dhii	JZ.IL/VIGD2013/COP	istraints/index.jsp?action=reason			
				🔂 Ad	ld new query		
	ID	Descripti	Description \$		Actions	Selected Query	
	• Q	L Select the	names of all pupil	s that attend a primary school.	XL	FROM pupil AS p, school AS s	
	ୢ	2 Select the the Bolzar	names of all pupil no district and that	s that attend a primary school in learn some language.	XL	WHERE s.type='primary' AND p.sname=s.sname	
	ୢ	3 Select the the Bolza	names of all 1st le no district and that	vel pupils that attend a school in learn some language	XL		
	0 Q	4 Select all	language learners.		XL		
	ୢୣ	5 Select all	classes.		XL		
	0 Q	5 Who learn	s English?		XL		
	ୢ	3 Select all language.	pupils from school	s in Bolzano who learn a	XL		
	0 Q	Give me a	ll pupils from prim	ary schools.	XL		
- R	Compl Genez Speci	/ is not complete eteness calculat alization calcul alization(s) cal	ed in 6 ms ated in 13 ms culated in 143 m	s			V Ku
R	esult Quer Compl Genez Speci	/ is not complete eteness calculat alization calcul alization (s) cal plete tables ing parts of the tab	ed in 6 ms ated in 13 ms culated in 143 m ples are incomplete	s . Please collect the missing data ar Condition	nd confirm it	by adding the corresponding TC-statem	nents.
R	esult Quer CompJ Gener Speci Incom The follow	/ is not complete eteness calculat alization calcul alization (s) cal plete tables ing parts of the tak able upil(P_pname,S sn	ed in 6 ms ated in 13 ms culated in 143 m ples are incomplete ame,P_code)	 Please collect the missing data an Condition school(S_sname,'primary'.S di 	nd confirm it strict)	by adding the corresponding TC-statem	nents.
R	esult Quer CompJ Genex Speci Incom The follow	/ is not complete eteness calculat alization calcul alization (s) cal plete tables ing parts of the tab iable upil(P_pname,S_sn	ed in 6 ms ated in 13 ms culated in 143 m ples are incomplete ame,P_code)	 Please collect the missing data an Condition school(S_sname,'primary',S_di 	nd confirm it strict)	by adding the corresponding TC-statem	nents.
R	esult Compl Genes Speci Incom The follov	y is not complete eteness calculat alization calcul alization (s) cal plete tables ing parts of the tab ing parts of the tab ing parts of the tab cable upil(P_pname,S_sname) ete Query Approxim	ed in 6 ms ated in 13 ms culated in 143 m ples are incomplete ame,P_code) nation	s . Please collect the missing data an Condition school(S_sname,'primary',S_di	nd confirm it strict)	by adding the corresponding TC-statem	nents.
	esult CompJ Genex Speci Incom The follow	/ is not complete eteness calculat alization calcul alization (s) cal plete tables ing parts of the tab ing parts of the tab able upil(P_pname,S_sn ete Query Approxim	ed in 6 ms ated in 13 ms culated in 143 m oles are incomplete ame,P_code) nation	Please collect the missing data ar Condition school(S_sname,'primary',S_di	nd confirm it strict)	by adding the corresponding TC-statem	nents.
	esult Compl Genez Speci Incom The follow	/ is not complete eteness calculat alization calcul alization (s) cal plete tables ing parts of the tab able upil(P_pname,S_sn ete Query Approxim	ed in 6 ms ated in 13 ms culated in 143 m oles are incomplete ame,P_code) mation Query Not avail	 Please collect the missing data an Condition school(S_sname,'primary',S_di 	nd confirm it strict)	by adding the corresponding TC-statem	nents.
	esult Compl Genes Speci Incom The follow Comp	y is not complete eteness calculat alization calcul alization (s) cal plete tables ing parts of the tak able upil(P_pname,S_sn ete Query Approxin Generalization al	ed in 6 ms ated in 13 ms culated in 143 m oles are incomplete ame,P_code) mation Query Not avail SELECT I FROM pt WHERE s AND p.s	s Please collect the missing data an Condition school(S_sname,'primary',S_di able DISTINCT p.pname upil AS p, school AS s .type='primary' name=s.sname	nd confirm it strict)	by adding the corresponding TC-statem	nents.

QUERY STABILITY IN BUSINESS PROCESSES

joint work with Werner Nutt

Ex: Student Registration

Faculty of Economics	Student places 2012 / 2013	Enrollments 2011 / 2012	Enrollments 2012 / 2013	%
Bachelor in Economics and Management				20.78%
Bachelor in Tourism, Sport and Event Management				74.51%
Bachelor in Economics and Social Sciences				17.24%
Master in Entrepreneurship and Innovation				114.29%
Master in Economics and Management of the public sector				22.73%
Sum	370			41.45%

Faculty of Computer Science	Student Places 2012 / 2013	Enrollments 2011 / 2012	Enrollments 2012 / 2013	%
Bachelor in Computer Science and Engineering				30.43%
Master of Science in Computer Science				-44.44%
PhD in Computer Science				#VALUE!
Sum	195			-25.37%

Data Stability

- Data Completeness is a rather strong requirement
 - Some information will be always incomplete or incomplete "for a short time"
- Data Stability is concerned whether data is stable in some period of time
 - "Is the number of students a stable figure during 2nd semester?"
 - "What is the longest periods for which the student numbers are stable?"

Business processes that manipulate data can tell us when the data (or query answer) is stable

What are Business Processes?

- Business Processes (BPs) are set of activities organized to accomplish a specific goal
 - E.g., Student registration, Car production, etc.

Business Processes

- Used for documenting how the companies and organizations operate their business using languages such as BPMN
- Can be executed using Business Process Engines
- Allow different types of analysis

 (simulation, verification, process mining, etc.)

Ex: Student Registration (cont'd)

• Student Registration managed by a Business Process (in BPMN)

- Some questions:
 - How final or reliable are the figures that we see?
 - For which programs the figures become final eventually?
 - Which are the time periods in which the figures are stable?

Ex: Purchasing Information System @ Univ. Bolzano

- Is the available amount of the budget a stable figure?
- What is the maximal and what minimal amount in the budget that is not going to be spent? Etc.

Process and Data: Two sides of the same coin

• In current BP languages,

the interaction between BPs and Data is very limited

- Recently, several models have been proposed
 - Relational transducers [Abiteboul et al., 1998]
 - Data-driven Web Systems [Deutsch et al., 2004; 2007]
 - Data-Centric Dynamic Systems [Calvanese et. al., 2012; 2013]

Data-aware Business Process

- Data-aware Business Process (DABP) is defined as a tuple D=(N, L, D, 0)
 - N = (P,T) process net represented as a finite graph
 - $L = (L_e, L_w) labeling functions$ that label edges t from T
 - $L_e(t)$ execution condition, Boolean Conjunctive Query over D, O
 - $L_w(t)$ writing action, a horn rule Head_t :- Body_t
 - D relational database
 - O set of (business) objects, where each o has associated
 - $M(o) \in P place$ of the process net
 - $Val(o) = R(\underline{s}) value$ as a record of fixed size
- $\mathcal{P} = (N, L) process part$ (static part)
- C = (D, 0) configuration part (dynamic part)

Execution in DABP

- An execution step in DABP is either
 - a) Traversal of an edge by an object, Object o can traverse t from T iff $D,Val(o) = L_e(t)$
 - b) Creation of a new object in the start place of a process which is "always possible"
- Result of an execution step is a new configuration C' = (D', O'), written $C \rightarrow C'$
 - a) If o traverses t then $D' = D \cup \{\alpha \text{ Head}_t \mid \alpha \text{ Body}_t \subseteq D, \text{Val}(o)\}$ M(o) points to the new place, and the rest remains the same
 - b) If o is a newly introduced object then O' = O U {o} and M(o)=start, and the rest remains the same

Query Stability in DABP

• Given DABP $\mathcal{D}=(N, L, D, 0)$, configuration C' = (D', 0') is **reachable**, if there exist execution steps $C = (D, 0) \rightarrow C_1 \rightarrow ... \rightarrow C_n \rightarrow C'$

Query Stability

Conjunctive query $Q(\underline{x}) := A1,...,An$ is stable in DABP $\mathcal{D}=(N, L, D, 0)$, if for every configuration C' = (D', 0') reachable from C = (D, 0)

Q(D) = Q(D')

Ex: Student Registration (cont'd)

 "Do we have stable figures for the students of informatics?" Q(Name) ← student(Name, 'informatics')
 No! Because we can still enroll new students

 "Do we have stable figures for the students of economics?" Q(Name) ← student(Name,'economics')

 Yes! Because we cannot enroll any new student

Ex: Student Registration (cont'd)

Faculty of Economics	Student places 2012 / 2013	Enrollments 2011 / 2012	Enrollments 2012 / 2013	%	Stable?
Bachelor in Economics and Management				20.78%	YES!
Bachelor in Tourism, Sport and Event Management				74.51%	YES!
Bachelor in Economics and Social Sciences				17.24%	YES!
Master in Entrepreneurship and Innovation				114.29%	YES!
Master in Economics and Management of the public sector				22.73%	YES!
Sum				41.45%	YES!

Faculty of Computer Science	Student Places 2012 / 2013	Enrollments 2011 / 2012	Enrollments 2012 / 2013	%	Stable?
Bachelor in Computer Science and Engineering				30.43%	YES!
Master of Science in Computer Science				-44.44%	NO!
PhD in Computer Science				#VALUE!	NO!
Si	um 🥵			-25.37%	NO!

Checking Stability in DABP

- 3 DABP dialects:
 - **DABP**^{core} forbids recursion in the horn writing rules
 - DABP^{chron} assumes no objects initially
 - DABP^{recur} no restrictions
- Computational Complexity of checking stability for CQ

complexity	DABP ^{core}	DABP ^{chron}	DABP ^{recur}	
data	AC^0	PTIME	CO-NP	
combined	CO-NP?	EXPTIME	co-NExpTime	
char. query lang.	CQ	DATALOG	DATALOG ^{neg}	

- data is measured in the size of the configuration
- combined is measured in the sizes of DABP and query

Conclusion

- 2 "subtle" aspects of data quality
 - query completeness
 - stability of queries answers
- Asses quality of query answers using metadata
 - completeness statements, constraints
 - business processes
- Characterization of query completeness under constraints
 - Basis for implementation in ASP
- Modeling query stability problem
 - Reasoning techniques for conjunctive queries

Thank you!

